Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

The hydrogen-bonded dimers of $N, N^{\prime}, N^{\prime \prime}$-tricyclohexylphosphoric triamide in new tin(IV) and copper(II) complexes

Mehrdad Pourayoubi, ${ }^{\text {a* }}$ James A. Golen, ${ }^{\text {b }}$ Mahnaz Rostami Chaijan, ${ }^{\text {a }}$ Vladimir Divjakovic, ${ }^{\text {c }}$ Monireh Negari ${ }^{\text {a }}$ and Arnold L. Rheingold ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran,
${ }^{\text {b }}$ Department of Chemistry, University of California, San Diego, 9500 Gilman Drive,
La Jolla, CA 92093, USA, and ${ }^{\text {c }}$ Department of Physics, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad, Serbia
Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

Received 2 January 2011
Accepted 13 April 2011
Online 28 April 2011

In the new tin(IV) and copper(II) complexes, cis-dichlorido-trans-dimethyl-cis-bis $\left(N, N^{\prime}, N^{\prime \prime}\right.$-tricyclohexylphosphoric triam-ide- $\kappa O) \operatorname{tin}(\mathrm{IV}),\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{OP}\right)_{2}\right]$, (I), and transdiaquabis $\left(N, N^{\prime}, N^{\prime \prime}\right.$-tricyclohexylphosphoric triamide- κO)copper(II) dinitrate- $N, N^{\prime}, N^{\prime \prime}$-tricyclohexylphosphoric triamide (1/2), $\left[\mathrm{Cu}\left(\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{OP}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{OP}$, (II), the $N, N^{\prime}, N^{\prime \prime}$-tricyclohexylphosphoric triamide (PTA) ligands exist as hydrogen-bonded dimers via $\mathrm{P}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ interactions around the metal center. The asymmetric unit in (I) consists of one complete complex molecule located on a general position. The $\mathrm{Sn}^{\mathrm{IV}}$ coordination geometry is octahedral with two cis hydrogen-bonded PTA ligands, two cis chloride ligands and two trans methyl groups. The asymmetric unit in (II) contains one half of a $\left[\mathrm{Cu}(\mathrm{PTA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ dication on a special position (site symmetry $\overline{1}$ for the Cu atom), one nitrate anion and one free PTA molecule, both on general positions. The complex adopts a square-planar trans$\left[\mathrm{CuO}_{2} \mathrm{O}_{2}\right]$ coordination geometry, with the $\mathrm{Cu}^{\text {II }}$ ion coordinated by two PTA ligands and two water molecules. Each of the noncoordinated PTA molecules is hydrogen bonded to a neighboring coordinated PTA molecule and an adjacent water molecule; the phosphoryl O atom acts as a double- H -atom acceptor. The P atoms in the PTA ligands of both complexes and in the noncoordinated hydrogen-bonded molecules in (II) adopt a slightly distorted tetrahedral environment.

Comment

The $\mathrm{P}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bond exists in the structures of phosphoramide compounds containing the $\mathrm{P}(\mathrm{O}) \mathrm{NH}$ moiety. In the process of coordination to a metal cation (M), one would anticipate that this interaction would be replaced with a
$\mathrm{P}=\mathrm{O} \cdots M$ bond (Gholivand et al., 2006). Here we discuss two cases where this type of hydrogen bond remains in a coordinated phosphoric triamide ligand in two new complexes and consider its possible role in the coordination mode of the ligand.

(II)

Organotin(IV) complexes, particularly those with organophosphorus ligands, have attracted attention because of their versatile biological properties (Gholivand et al., 2010). Similar to organophosphorus ligands, phosphoramides are suitable for reacting with organotin(IV) compounds. In this series, a few organotin(IV)-phosphoramide compounds have been reported with some phosphoramide ligands. A search of the Cambridge Structural Database (CSD, Version 5.32, November 2010 update; Allen, 2002) shows that in all reported dialkyltin(IV) dihalide tris(alkylamido)phosphate compounds, the phosphoramide ligands adopt a trans arrangement. We present here the first structure of this class of organotin(IV) complexes with two phosphoric triamide ligands in cis positions (Fig. 1). The Sn coordination geometry in cis-dichlorido-trans-dimethyl-cis-bis($N, N^{\prime}, N^{\prime \prime}$-tricyclohexylphosphoric triamide- κO) $\operatorname{tin}(\mathrm{IV})$, (I), is octahedral with the $N, N^{\prime}, N^{\prime \prime}$-tricyclohexylphosphoric triamide (PTA) and chloride ligands cis, but with the methyl groups trans (Fig. 1 and Table 1). The P atoms in the PTA ligands adopt a slightly distorted tetrahedral environment. The $\mathrm{Sn}-\mathrm{O}-\mathrm{P}$ angles are both slightly greater than 140°. These geometric parameters are consistent with those observed in related structures: $\left[\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{PO}\right]_{2} X_{2} \mathrm{Me}_{2} \mathrm{Sn}$, with $X=\mathrm{Br}(\mathrm{CSD}$ refcode BDMSAP; Aslanov et al., 1977), Cl (CDMSAP01; Rheingold et al., 1984); $\left[\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{PO}\right]_{2} X_{2} \mathrm{Et}_{2} \mathrm{Sn}$, with $X=\mathrm{I}$ (DUCJAM; Tursina et al.,

Figure 1
The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 50% probability level. Intramolecular hydrogen bonds are shown as thin dotted lines.
1985), Br (FILCIM and FILCIM01; Tursina et al., 1987); [$R_{2}-$ $\{\mathrm{PhC}(\mathrm{O}) \mathrm{NH}\} \mathrm{PO}]_{2} \mathrm{Cl}_{2} \mathrm{Me}_{2} \mathrm{Sn}$ (Gholivand \& Shariatinia, 2006), with $R=t$-BuNH (YERGEI), $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}$ (YERGIM), $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}$ (YERGOS) and (Me)(Cy)N (Cy is cyclohexyl; YERGUY); $\left\{\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}\right)_{2}[(p-\mathrm{F}-\mathrm{Ph}) \mathrm{C}(\mathrm{O}) \mathrm{NH}] \mathrm{PO}_{2} \mathrm{Cl}_{2} \mathrm{Me}_{2} \mathrm{Sn}\right.$ (LEHWIF; Gholivand et al., 2006).

The two symmetry-independent PTA ligands in (I) are involved in an intramolecular $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 2-\mathrm{P} 2$ hydrogen bond (Table 2) in which the amide group of one ligand (P1) interacts with the phosphoryl O atom of the other ligand. This hydrogen bond may be considered as a factor helping to stabilize the previously unobserved cis geometry. The P2-O2 bond length is a little longer than the $\mathrm{P} 1-\mathrm{O} 1$ bond length, the latter O atom not serving as a hydrogen-bond acceptor. An intramolecular $\mathrm{N} 5-\mathrm{H} 5 \mathrm{~N} \cdots \mathrm{C} 2$ hydrogen bond is also found in the structure. The environment of each N atom in the PTA ligands is almost planar and it does not form any hydrogen bonds as an acceptor, showing its low Lewis-base character. In previously reported phosphoramide compounds and their dialkyl dichloride tin(IV)-phosphoramide complexes (Gholivand et al., 2004, 2006; Gholivand \& Shariatinia, 2006), the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds which appear in the structures of the free phosphoramide molecules are replaced by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds in the complexes, as the phosphoryl O atoms are involved in $\mathrm{Sn}-\mathrm{O}$ covalent bonds in the latter. This fact may be supported by IR spectroscopy in which the $\mathrm{N}-\mathrm{H}$ stretching frequencies in the tin complexes are higher than in the free molecules as they are involved in weaker $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

The two-dimensional hydrogen-bonded network in (I) is produced via some different weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds between the complex and three neighboring complexes in the crystal (Fig. 2). In this case, the Cl 1 and Cl 2 atoms are, respectively, involved in $\mathrm{N} 6-\mathrm{H} 6 \mathrm{~N} \cdots \mathrm{Cl}^{\mathrm{ii}}$ and $\mathrm{N} 4-\mathrm{H} 4 \mathrm{~N} \cdots$ $\mathrm{Cl} 22^{\mathrm{ii}}$ interactions [symmetry code: (ii) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$] to build an $R_{2}^{2}(8)$ ring (Etter et al., 1990; Bernstein et al., 1995).

Figure 2
A view of the crystal packing of (I). Hydrogen bonds are shown as thin dotted lines. H atoms on C atoms are not shown for clarity. [Symmetry codes: (i) $-x+2,-y,-z+1$; (ii) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.]

The molecular structure of (II), with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as thin dotted lines. [Symmetry code: (i) $-x+1,-y+1,-z+1$.]

The Cl 2 atom is also involved in an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond, which has been noted earlier, while the Cl 1 atom co-operates in another intermolecular $\mathrm{N} 3-\mathrm{H} 3 \mathrm{~N} \cdots \mathrm{Cl} 1^{1}$ hydrogen bond [symmetry code: (i) $-x+2,-y,-z+1$] (Table 2).

Copper complexes have been of interest as the interface between biochemistry and coordination chemistry (Collinson \& Fenton, 1996; Hossain et al., 1996; Tarafder et al., 2002). The PTA ligand was also used to prepare a new copper(II) phosphoramidate complex, namely trans-diaquabis($N, N^{\prime}, N^{\prime \prime}$ tricyclohexylphosphoric triamide- κO)copper(II) dinitrate$N, N^{\prime}, N^{\prime \prime}$-tricyclohexylphosphoric triamide (1/2), (II) (Fig. 3). The asymmetric unit contains one half of a $\left[\mathrm{Cu}(\mathrm{PTA})_{2}-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ dication, one nitrate anion and one free PTA molecule. The $\mathrm{Cu}^{\text {II }}$ ion is located on a crystallographic inversion center. The complex thus adopts a square-planar trans$\left[\mathrm{CuO}_{2} \mathrm{O}_{2}\right]$ coordination geometry, with the $\mathrm{Cu}^{\text {II }}$ ion coordinated by two PTA ligands and two water molecules. The phosphoryl O atom makes a shorter $\mathrm{Cu}-\mathrm{O}$ bond than the water O atom (Table 3). The P atoms in the PTA ligands adopt a slightly distorted tetrahedral environment and the $\mathrm{Cu}-\mathrm{O}-\mathrm{P}$ angle is a little under 140°. These geometric parameters are consistent with those in related structures: $\left[\mathrm{Cu}_{4} \mathrm{OCl}_{6}\left\{(\mathrm{O}) \mathrm{P}\left(\mathrm{NH}^{t} \mathrm{Bu}\right)_{3}\right\}_{4}\right]$ (LIDNIW; Fu \& Chivers, 2007), $\left[\mathrm{Cu}\left(\mathrm{ONO}_{2}\right)_{2}\left\{(\mathrm{O}) \mathrm{P}\left(\mathrm{NH}^{t} \mathrm{Bu}\right)_{3}\right\}_{2}\right]$ (LIDPAQ; Fu \& Chivers, 2007) and $\left[\mathrm{CuCl}_{2}\left(\mathrm{NHC}_{4} \mathrm{H}_{8} \mathrm{O}\right)\left\{(\mathrm{O}) \mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}\right\}\right.$ (YIBZEP; Xie et al., 2007).

Each of the noncoordinated PTA molecules is hydrogen bonded to a neighboring coordinated PTA molecule via an $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 3^{\mathrm{i}}$ hydrogen bond [Table 4 ; symmetry code: (i) $-x+1,-y+1,-z+1]$ and to an adjacent water molecule via an $\mathrm{O} 2-\mathrm{H} 2 W B \cdots \mathrm{O} 3$ hydrogen bond. The noncoordinated PTA phosphoryl O atom thus acts as a double-H-atom acceptor (Steiner, 2002). Atom O5 of the nitrate anion co-

Figure 4
A view of the centrosymmetric hydrogen-bonded pentamer containing one $\left[\mathrm{Cu}(\mathrm{PTA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ dication (green in the electronic version of the paper), two PTA molecules (red) and two nitrate anions (blue); the two other nitrate anions in the top right and bottom left of the figure, which co-operate in two weak $\mathrm{N} 5-\mathrm{H} 5 \mathrm{~N} \cdots \mathrm{O} 4^{\mathrm{ii}}$ and $\mathrm{N} 5-\mathrm{H} 5 \mathrm{~N} \cdots \mathrm{O}^{\text {ii }}$ hydrogen bonds, assemble neighboring pentamers in a two-dimensional array. Hydrogen bonds are shown as thin dotted lines. [Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.]

Figure 5
The two-dimensional arrangement of molecules in the structure of (II) viewed along the ($\overline{1} 01$) plane.
operates in $\mathrm{O} 2-\mathrm{H} 2 W A \cdots \mathrm{O} 5, \mathrm{~N} 3-\mathrm{H} 3 \mathrm{~N} \cdots \mathrm{O} 5$ and $\mathrm{N} 4-$ $\mathrm{H} 4 \mathrm{~N} \cdots \mathrm{O} 5$ hydrogen bonds, respectively, with neighboring coordinated water, and coordinated and noncoordinated PTA molecules (Fig. 4 and Table 4). Moreover, atom O4 of the nitrate anion co-operates in hydrogen-bonding interactions with $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$ and $\mathrm{N} 3-\mathrm{H} 3 \mathrm{~N}$ groups of the adjacent coordinated PTA. These interactions make a centrosymmetric hydrogen-bonded pentamer containing one dication, two PTA molecules and two nitrate anions. The N5-H5N group of free PTA molecules is involved in two weak hydrogen bonds, viz. $\mathrm{N} 5-\mathrm{H} 5 \mathrm{~N} \cdots \mathrm{O} 4{ }^{\mathrm{ii}}$ and $\mathrm{N} 5-\mathrm{H} 5 \mathrm{~N} \cdots \mathrm{O}^{\mathrm{ii}}$ [symmetry code: (ii) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$] (Fig. 4). These hydrogen bonds assemble the centrosymmetric pentamers in a two-dimensional arrangement along the ($\overline{1} 01$) plane (Fig. 5).

Experimental

$N, N^{\prime}, N^{\prime \prime}$-Tricyclohexylphosphoric triamide (PTA) was prepared according to the procedure reported by Audrieth \& Toy (1942). IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3272(\mathrm{NH}), 2930,2852,2667,1659,1440,1296,1237$, $1145,1111,1004,926,882$. For the synthesis of $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl}_{2}(\mathrm{PTA})_{2}\right]$, (I), a solution of dimethyltin(IV) dichloride ($0.253 \mathrm{~g}, 1.15 \mathrm{mmol}$) in chloroform (5 ml) was added dropwise to a solution of PTA $(0.787 \mathrm{~g}$, $2.30 \mathrm{mmol})$ in chloroform (15 ml). The clear solution was stirred for 5 h . Colorless crystals were obtained after a few days in a refrigerator (at 278 K). An effort to prepare the trans complex under reflux conditions (24 h) in $\mathrm{CH}_{3} \mathrm{OH}$ was not successful and led to the cis complex, which was confirmed by X-ray crystallography (yield: approximately 80%). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3285(\mathrm{NH}), 2921,2852,1444$, 1301, 1242, 1112, 1023, 936, 792. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202.45 MHz , DMSO$d_{6}, 300.0 \mathrm{~K}, \mathrm{H}_{3} \mathrm{PO}_{4}$ external): $\delta 12.83(s) .{ }^{1} \mathrm{H}$ NMR (500.13 MHz ,

DMSO- $\left.d_{6}, 300.0 \mathrm{~K}, \mathrm{TMS}\right): ~ \delta 1.02\left(s, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.13(\mathrm{~m}, 30 \mathrm{H}), 1.49(\mathrm{~m}$, $6 \mathrm{H}), 1.63(\mathrm{~m}, 12 \mathrm{H}), 1.79(\mathrm{~m}, 12 \mathrm{H}), 2.80(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}), 3.49(b, 6 \mathrm{H}$, NH). ${ }^{13} \mathrm{C}$ NMR (125.75 MHz , DMSO- $d_{6}, 300.0 \mathrm{~K}$, TMS): $\delta 22.95(s$, CH_{3}), $25.01(s), 25.23(s), 35.48\left[d,{ }^{3} \mathrm{~J}(P, C)=4.7 \mathrm{~Hz}\right], 49.48(s)$.

For the synthesis of $\left[\mathrm{Cu}(\mathrm{PTA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{PTA}$, (II), a solution of copper(II) nitrate trihydrate $(0.547 \mathrm{~g}, 2.26 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{ml})$ was added dropwise to a solution of PTA (1.423 g , $4.17 \mathrm{mmol})$ in ethanol $(10 \mathrm{ml})$. The resulting clear solution was stirred for 2 h at room temperature. Single crystals were obtained from a mixture of dimethylformamide/ethanol after slow evaporation at room temperature (yield: approximately 30%). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3345 , $3273,2925,2847,1650,1432,1394,1232,1101,1028,950,882,828 .{ }^{13} \mathrm{C}$ NMR (125.75 MHz, DMSO- $\left.d_{6}, 300.0 \mathrm{~K}, \mathrm{TMS}\right): ~ \delta 26.13(s), 37.02(s)$, 41.96 (b), 49.29 (s).

Compound (I)

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{OP}\right)_{2}\right]$
$M_{r}=902.59$
Monoclinic, $P 2_{1} / n$
$a=12.0882(6) \AA$
$b=25.1607(13) \AA$
$c=15.8103(8) \AA$
$\beta=108.879(1)^{\circ}$

Data collection

Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan (APEX2; Bruker, 2005)
$T_{\text {min }}=0.772, T_{\text {max }}=0.825$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.080$
$S=1.00$
12101 reflections

Compound (II)

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{OP}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$ $2 \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{OP}$
$M_{r}=1589.46$
Monoclinic, $P 2_{1} / n$
$a=15.4495$ (12) \AA
$b=18.6924$ (14) \AA
$c=16.5229$ (12) \AA

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}=0.911, T_{\text {max }}=0.932$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.106$
$S=1.04$
9496 reflections
490 parameters
9 restraints
$V=4550.0(4) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.79 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.35 \times 0.25 \times 0.25 \mathrm{~mm}$

71686 measured reflections 12101 independent reflections 10758 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.030$

462 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.84 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.48$ e \AA^{-3}
$\beta=116.656(1)^{\circ}{ }^{\circ}$
$V=4264.5$ (6) \AA^{3}
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.39 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.24 \times 0.20 \times 0.18 \mathrm{~mm}$

32668 measured reflections 9496 independent reflections 7117 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.054$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.47 \mathrm{e}_{\mathrm{\circ}} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (I).

$\mathrm{Sn} 1-\mathrm{C} 38$	$2.1114(16)$	$\mathrm{P} 1-\mathrm{O} 1$	$1.5032(11)$
$\mathrm{Sn} 1-\mathrm{O} 1$	$2.2281(11)$	$\mathrm{P} 1-\mathrm{N} 1$	$1.6397(14)$
$\mathrm{Sn} 1-\mathrm{Cl} 1$	$2.5479(4)$	$\mathrm{P} 2-\mathrm{O} 2$	$1.5116(11)$
$\mathrm{C} 38-\mathrm{Sn} 1-\mathrm{C} 37$	$176.31(6)$	$\mathrm{O} 2-\mathrm{P} 2-\mathrm{N} 6$	$107.63(6)$
$\mathrm{C} 38-\mathrm{Sn} 1-\mathrm{O} 1$	$90.69(6)$	$\mathrm{P} 1-\mathrm{O} 1-\mathrm{Sn} 1$	$142.63(7)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 2$	$87.31(4)$	$\mathrm{P} 2-\mathrm{O} 2-\mathrm{Sn} 1$	$144.10(6)$
$\mathrm{C} 38-\mathrm{Sn} 1-\mathrm{Cl} 1$	$90.83(5)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{P} 1$	$128.23(11)$
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{C} 1$	$176.07(3)$	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{P} 1$	$123.14(10)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{N} 3$	$117.82(7)$	$\mathrm{C} 13-\mathrm{N} 3-\mathrm{P} 1$	$120.32(10)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{N} 2$	$106.76(7)$	$\mathrm{C} 19-\mathrm{N} 4-\mathrm{P} 2$	$124.77(10)$
$\mathrm{O} 2-\mathrm{P} 2-\mathrm{N} 4$	$117.89(7)$	$\mathrm{C} 25-\mathrm{N} 5-\mathrm{P} 2$	$122.46(11)$

Table 2
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H2N $\cdots \mathrm{O} 2$	0.86	2.16	$2.9900(16)$	161
N3-H3N $\cdots \mathrm{Cl1}{ }^{\mathrm{i}}$	0.92	2.61	$3.4403(13)$	151
N4-H4N $\cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.88	2.46	$3.3296(12)$	169
N5-H5N $\cdots \mathrm{Cl} 2$	0.83	2.51	$3.3135(15)$	162
N6-H6N $\cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.87	2.53	$3.3736(14)$	165

Symmetry codes: (i) $-x+2,-y,-z+1$; (ii) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.

Table 3
Selected geometric parameters ($\AA^{\circ},^{\circ}$) for (II).

$\mathrm{P} 1-\mathrm{O} 1$	$1.5090(14)$	$\mathrm{Cu} 1-\mathrm{O} 2$	$1.9229(15)$
$\mathrm{P} 1-\mathrm{N} 2$	$1.6240(17)$	$\mathrm{P} 2-\mathrm{O} 3$	$1.5024(15)$
$\mathrm{P} 1-\mathrm{N} 3$	$1.6274(18)$	$\mathrm{P} 2-\mathrm{N} 5$	$1.6288(16)$
$\mathrm{P} 1-\mathrm{N} 1$	$1.6372(17)$	$\mathrm{P} 2-\mathrm{N} 6$	$1.6348(17)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.8888(12)$	$\mathrm{P} 2-\mathrm{N} 4$	$1.6495(17)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{N} 2$	$103.41(8)$	$\mathrm{P} 1-\mathrm{O} 1-\mathrm{Cu} 1$	$139.13(9)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{N} 3$	$118.43(9)$	$\mathrm{O} 3-\mathrm{P} 2-\mathrm{N} 5$	$106.71(8)$
$\mathrm{N} 2-\mathrm{P} 1-\mathrm{N} 3$	$106.46(9)$	$\mathrm{O} 3-\mathrm{P} 2-\mathrm{N} 6$	$114.77(9)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{N} 1$	$111.53(8)$	$\mathrm{N} 5-\mathrm{P} 2-\mathrm{N} 6$	$107.65(8)$
N2-P1-N1	$115.45(9)$	$\mathrm{O} 3-\mathrm{P} 2-\mathrm{N} 4$	$116.43(8)$
N3-P1-N1	$102.03(9)$	$\mathrm{N} 5-\mathrm{P} 2-\mathrm{N} 4$	$110.75(9)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$91.42(6)$	$\mathrm{N} 6-\mathrm{P} 2-\mathrm{N} 4$	$100.25(8)$

Table 4
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1N \cdots O ${ }^{\text {a }}$	0.85 (1)	2.28 (1)	3.064 (2)	154 (2)
N3-H3N \cdots O5	0.85 (1)	2.45 (1)	3.199 (2)	148 (2)
N3-H3N \cdots O 4	0.85 (1)	2.47 (1)	3.232 (2)	149 (2)
$\mathrm{O} 2-\mathrm{H} 2 W A \cdots \mathrm{O}$	0.82 (1)	1.99 (1)	2.811 (2)	175 (2)
$\mathrm{O} 2-\mathrm{H} 2 W B \cdots \mathrm{O}$	0.83 (1)	1.77 (1)	2.5926 (19)	170 (2)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O}^{3}$	0.85 (1)	2.18 (1)	2.983 (2)	159 (2)
N4-H4N $\cdots \mathrm{O} 5$	0.85 (1)	2.23 (1)	3.050 (2)	163 (2)
N5-H5N $\cdots \mathrm{O}^{\text {ii }}$	0.84 (1)	2.43 (1)	3.244 (2)	164 (2)
N5-H5N $\cdots \mathrm{O}_{4}{ }^{\text {ii }}$	0.84 (1)	2.73 (2)	3.359 (2)	133 (2)
N6-H6N . . O6	0.84 (1)	2.46 (1)	3.258 (2)	159 (2)

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.

For (I), N-bonded H atoms were found in difference Fourier maps. C -bonded H -atom positions were calculated, and the $\mathrm{C}-\mathrm{H}$ distances
were normalized at standard values of $0.98-1.00 \AA$, depending on the hybridization. All the H atoms were treated as riding atoms with their $U_{\text {iso }}(\mathrm{H})$ parameters equal to $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ otherwise. For (II), H atoms on N and O atoms were found in difference Fourier maps and were allowed to refine with $\mathrm{N}-\mathrm{H}=$ 0.86 (1) $\AA, \mathrm{O}-\mathrm{H}=0.84$ (1) \AA and $\mathrm{H} 2 W A \cdots \mathrm{H} 2 W B=1.20$ (2) \AA, and with isotropic displacement parameters fixed at $1.2 U_{\text {eq }}$ of the parent atom. All other H atoms were placed in calculated positions and included as riding atoms, with $\mathrm{C}-\mathrm{H}=1.00(\mathrm{CH})$ or $0.99 \AA\left(\mathrm{CH}_{2}\right)$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

For both compounds, data collection: APEX2 (Bruker, 2005). Cell refinement: $A P E X 2$ for (I); SAINT (Bruker, 2008) for (II). Data reduction: APEX2 for (I); SAINT for (II). Program(s) used to solve structure: SHELXTL (Sheldrick, 2008) for (I); SHELXS97 (Sheldrick, 2008) for (II). Program(s) used to refine structure: SHELXTL for (I); SHELXL97 (Sheldrick, 2008) for (II). For both compounds, molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL.

Support of this investigation by the Ferdowsi University of Mashhad is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ3282). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Aslanov, L. A., Ionov, V. M., Attiya, V. M., Permin, A. B. \& Petrosyan, V. S. (1977). Zh. Strukt. Khim. 18, 1103-1113.

Audrieth, L. F. \& Toy, A. D. F. (1942). J. Am. Chem. Soc. 64, 1553-1555.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2008). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2009). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Collinson, S. R. \& Fenton, D. E. (1996). Coord. Chem. Rev. 148, 19-40.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256262.

Fu, Z. \& Chivers, T. (2007). Can. J. Chem. 85, 358-365.
Gholivand, K., Farshadian, S., Hosseini, Z., Khajeh, K. \& Akbari, N. (2010). Appl. Organomet. Chem. 24, 700-707.
Gholivand, K., Pourayoubi, M. \& Mostaanzadeh, H. (2004). Anal. Sci. 20, x51x 52 .
Gholivand, K. \& Shariatinia, Z. (2006). J. Organomet. Chem. 691, 42154224.

Gholivand, K., Shariatinia, Z. \& Pourayoubi, M. (2006). Polyhedron, 25, 711721.

Hossain, M. E., Alam, M. N., Begum, J., Akbar Ali, M., Nazimuddin, M., Smith, F. E. \& Hynes, R. C. (1996). Inorg. Chim. Acta, 249, 207-213.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Rheingold, A. L., Ng, S. W. \& Zuckerman, J. J. (1984). Inorg. Chim. Acta, 86, 179-183.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.
Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. \& Fun, H.-K. (2002). Polyhedron, 21, 2547-2554.

Tursina, A. I., Aslanov, L. A., Chernyshev, V. V., Medvedev, S. V. \& Yatsenko, A. V. (1985). Koord. Khim. 11, 696-701.

Tursina, A. I., Medvedev, S. V., Yatsenko, A. V. \& Aslanov, L. A. (1987). Zh. Strukt. Khim. 28, 90-97.
Xie, D.-M., Ma, X.-J., Feng, W.-J., Shu, Z. \& Jin, Z.-M. (2007). Acta Cryst. E63, m1473-m1475.

